British Cardiovascular Society

BCS Editorial

ESC 2022 Cardio-Oncology Guidelines: Paving the way for cardiovascular care through the minefield of cardiotoxicity in cancer survivorship

Leigh-Ann Wakefield MBChB, BSc (Hons)

Deputy Editor

Cardiology Registrar Royal Sussex County Hospital Brighton

Editor Ahmed Adlan

Evelyn Brown

July 2023

Introduction

Cardiovascular disease (CVD) and cancer are two major causes of mortality worldwide (1). Chemotherapeutic agents have come a long way and the advent of targeted therapies has ushered in a new era of personalised cancer care which, along with risk factor reduction, have shown a decline in cancer mortality (2, 3). As cancer survival improves, the burden of CVD becomes more apparent (4). The Surveillance, Epidemiology and End Results (SEER) database showed that the risk of mortality from CVD was greatest in the first year of cancer diagnosis and patients diagnosed under 55 years old had a ten-fold risk of CVD related death compared to the general population (5).

Cancer therapy-related cardiovascular toxicity

Take Home Messages

- Cardiovascular disease is a prominent issue throughout cancer patients' journeys from pretherapy to long term post-therapy surveillance
- The development of newer cancer therapies is widening the range of possible treatment related cardiovascular toxicities which require a more personalized approach to surveillance and treatment
- Thorough risk assessment and early identification throughout the cancer treatment process is important in minimizing the impact of potential long term cancer therapy-related cardiovascular toxicity.
- Data on optimal long-term surveillance for multiple therapies is still limited and requires further large extended studies to guide management as cancer survival continues to improve

(CTR-CVT) is a well-established complication of chemotherapy (6). As new forms of treatment are developed, and survival improves, the short- and long-term impacts of CTR-CVT play a vital role in cancer survivorship. Guidelines have, up until now, been scarce in this area with teams being guided by expert opinion. The European Society of Cardiology (ESC) has, this year, published its first guideline on providing a comprehensive cardio-oncology, overview of CVD through the cancer patients' journey from prevention to long-term follow-up (7). This guideline, along with dedicated cardiooncology services, will allow us to apply a more personalised approach to cancer patient care. This editorial will focus primarily on anthracycline therapies with a general overview on the more commonly encountered therapeutics (Table 1).

About the author

Leigh-Ann Wakefield graduated from Warwick Medical School and completed her foundation and core medical training in London. She then went on to become a cardiology registrar in the KSS deanery and has just completed ST5 training. Her main interests are in cardiac imaging and she has just started a post as an echocardiography research fellow in North West London.

Table 1. General overview of commonly used chemotherapies*										
Therapy Class	Cancers Treated	Therapies	Potential Cardiovascular Effects	General monitoring Principals – Within 12 months of treatment						
	Breast Cancer	Trastuzumab		Baseline ECG, TTE, BNP, Troponin						
HER-2 therapies		Pertuzumab	HF	Repeat TTE every 3 months						
		Neratinib		Consider biomarker monitoring at 3 & 12 months (Every 2-3 cycles in high-risk patients)						
Endocrine Therapy	Breast Cancer	Tamoxifen	HF, Metabolic	Baseline CVRA (Risk estimation with SCORE2) – Then annual CVRA						
		Letrozole	syndrome, HTN, MI,							
		Anastrozole	VTE	Regular lipid profile, BP and advice/ counselling regarding diet/exercise/smoking						
	Gastrointestinal	5-FU	Angina, HTN, Takotsubo, MI,	Baseline – CVRA, ECG, lipids, HbA1c, TTE (if symptomatic)						
Fluoropyrimidines	Breast Cancer	Capecitabine	myocarditis, Arrhythmia	Consider baseline CAD screening in high risk						
		Sunitinib		BP monitoring every visit, daily home monitoring for 1 st cycle and after dose increases						
VEGF	Renal, Thyroid, Hepatocellular	Bevacizumab Sorafenib	HTN, Arterial and venous thrombosis, Prolong QTc, HF, MI	Low risk: Baseline – ECG/TTE						
				Mod+ Risk: Baseline – ECG/TTE/BNP – Then 3- 4 monthly TTE/BNP (Regular ECG if high QTc prolongation risk)						
		Nilotinib		Baseline – CVRA/BP/ECG/HbA1c/Lipids/TTE – Then CVRA & BP every 3 months						
Tyrosine kinase inhibitors (BCR-	Chronic Myeloid Leukaemia	Dasatinib	HTN, Prolong QTc, AF, HF, Inc glucose & lipids, Effusions,	Consider ABPI/TTE/Lipids/HbA1c 3 monthly with Nilotinib, Ponatinib & Dasatinib						
ABL)		Bosutinib Ponatinib	Pulm HTN, MI, CVA	 Each therapy in class may have unique monitoring criteria (See full guidelines for details) 						
Protease inhibitors	Myeloma	Bortezomib	HTN, diabetes, HF, AF, MI, VTE, Pulm	Baseline – CVRA/BP/ECG/TTE/BNP – Then BP every visit, BNP every cycle during first 6						
		Carfilzomib	HTN	cycles and TTE every 3 cycles with Carfilzomib						
Androgen deprivation therapy	Prostate cancer	Goserelin		Baseline – CVRA (Risk estimation with SCORE2)/ECG and annual CVRA						
		Degarelix	HTN, Diabetes, HF,							
		Bicalutamide	MI, AF, Prolong QTc	Consider further ECG's if at prolonged QTc risk Consider using a GnRH class as an alternative						
		Abiraterone		in symptomatic pre-existing CV disease						

*In-depth and unique monitoring guidelines for certain therapies can be found within the guideline. Adapted from Lyon AR *et al* (7).

AF = Atrial Fibrillation; BNP = Brain Natriuretic Peptide; CVA = Cerebrovascular Accident; CVRA = Cardiovascular Risk Assessment; ECG = Electrocardiogram; HF = Heart failure; HTN = Hypertension; MI = Myocardial infarction; TTE = Transthoracic echocardiogram; VTE = Venous Thromboembolism.

Pre-Treatment

A core Class I recommendation of the guideline is assessment of baseline risk prior to treatment but there is still a lack of data on scoring systems that can be readily applied to multiple malignancies. Although further validation is needed, risk stratification tools have been developed by the Heart Failure Association (HFA) in collaboration with the International Cardio-Oncology Society (ICOS). This categorises patients into low to very high-risk groups based on assessment of several categories (**Figure 1**) (7).

	thracycline Pre-Therapy Risk sessment	SCORE ☑ / ☑	GRADE		GR	OUP
	Previous Cardiovascular Disease					
	Heart Failure/ Cardiomyopathy		Very High		Very High	Any One Very
	Severe Valvular Heart Disease		High		Risk	High Risk Factor Score
	MI or Previous PCI (Incl. CABG)		High		Misik	30016
	Stable Angina		High			
	Cardiac Imaging					
	Baseline LVEF <50%		High			
	Borderline LVEF 50-54%		Medium2		High	Any One High Risk Factor Score
-	Cardiac Biomarkers				Risk	OR
LS I	Elevated baseline troponin		Medium1		RISK	Medium Risk Factors with a total score ≥ 5
Risk Factors	Elevated baseline BNP/ NT-proBNP		Medium1			
aC	Demographics & Co-morbidities					
ЦЙ.	Age >80		High			
X	Age 65-79		Medium2		Medium Risk Factors	Any Medium
Ë	Hypertension		Medium1			Risk Factors with a total
	Diabetes		Medium1		RISK	score of 2-4
	CKD		Medium1			
	Previous Cardiotoxic Chemotherapy					
	Previous Anthracyclines		High			
	Previous left chest/ mediastinal radiotherapy		High		Low	No Risk Factors
	Other previous chemotherapy		Medium1		Risk	OR One Medium1
	Lifestyle				NISK	Score
	Current smoker or significant history		Medium1			
	Obesity (BMI >30 KG/M2)		Medium1			

Figure 1. Example Heart Failure Association – International Cardio-Oncology Society (HFA-ICOS) pre-assessment risk tool for CVD prior to anthracycline therapy (Adapted from Lyon AR et al (7)).

CABG = Coronary Artery Bypass Graft; CKD = Chronic Kidney Disease; CVD = Cardiovascular disease; LVEF = Left Ventricular Ejection Fraction; MI = Myocardial Infarction; PCI = Percutaneous Coronary Intervention.

This creates a personalised approach to CVD prevention and surveillance allowing early identification of CTR-CVT to improve both cancer and cardiovascular outcomes.

During Treatment

Surveillance during treatment includes a 12-lead electrocardiogram, cardiac imaging and monitoring of biomarkers. The role of cardiac biomarkers is still not fully understood but one meta-analysis suggests troponin can be helpful in predicting LV dysfunction during treatment with a 69% sensitivity and a negative predictive value over 93% (8). This especially true during anthracycline-based is therapies at high-doses (8). Cardiac imaging plays a pivotal role in surveillance, especially in the form of echocardiography with global longitudinal strain, with surveillance frequency depending on patients pre-determined risk category (Figure 2). Early detection will enable initiation of cardioprotective therapies before, possibly irreversible, cardiac dysfunction and minimise interruptions to cancer treatment (7).

The development of any CTR-CVT should be discussed in a multi-disciplinary team setting. cardiac Cancer therapy related dysfunction (CTRCD) in the form of symptomatic or asymptomatic heart failure is the predominantly encountered CTR-CVT in anthracycline therapy (9). In symptomatic CTRCD or at least moderate asymptomatic CTRCD, guideline-based heart failure (HF) therapy is recommended. In mild asymptomatic CTRCD a beta-blocker (BB) and angiotensin-converting enzyme inhibitor (ACE-I) should be considered. Interestingly a recent systematic review and meta-analysis looking at prophylactic BB and ACE-I in anthracycline based regimes demonstrated preservation of LV function when compared with placebo (7, 10, 11). However, there was no statistical difference in occurrences of clinical HF. This could be due to small study sizes and the use of lower risk patients but could be a promising future prospect.

Figure 2. Surveillance protocol for patients receiving anthracyclinebased therapy depending on risk group. Protocol starts at Pre-Treatment baseline up until 12 months post final treatment cycle (Adapted from Lyon AR et al (7)). BIO = Cardiac Biomarkers;

ECG = Electrocardiogram; ECHO = Echocardiogram.

Post-Treatment

End of successful cancer treatment is understandably a big relief for patients, but our role as cardiologists should not stop there. A large study post-anthracycline prospective therapy showed 98% of CTRCD occurred within the first year after the last anthracycline dose. (12). Response to HF therapies reduces as treatment delay increases; one study found that no patients

with a treatment delay >6 months had a complete recovery of LV function (13). An end of therapy assessment should be used to determine who requires surveillance, in the first 12 months, and beyond. This depends on pre-determined risk scores, chemotherapeutic agent and events during treatment (**Figure 3**). The long-term effects of other therapies over 10 years are currently unknown with no recommendations for specific long-term surveillance unless there are other indications (7).

Figure 3. Long Term Surveillance plan for anthracycline based chemotherapy regimes based on risk category group post treatment (Adapted from Lyon AR et al (7)). CTRCD = Cancer therapy related cardiac dysfunction; Gy = Gray (Unit of ionizing radiation dose representing absorbed tissue dose); MHD = Mean Heart Dose; RT = Radiotherapy; TTE = Transthoracic Echocardiogram.

Very High Risk	Very high baseline risk		
	Doxorubicin/ Equivalent ≥ 400mg/m2		
	RT >25 Gy MHD		Consider TTE at 1,3 and 5yrs post therapy and every 5yrs
	RT 15-25 Gy MHD + Doxorubicin ≥ 100mg/m2		after in Adults (Class IIa)
Early	High baseline risk		
High Risk (<5 years	Symptomatic or asymptomatic moderate to severe CTRCD during treatment	Annual Cardiovascular Assessment	
post therapy)	Doxorubicin 250-399 mg/m2		
	High risk stem cell transplant	Continuing education	Consider TTE every 2yrs in adults who are child and
Late High	RT >15 – 25 Gy MHD	and optimisation of	adolescent cancer survivors
Risk (>30 years	RT 5 – 15 Gy MHD + Doxorubicin ≥ 100 mg/m2	cardiovascular risk factors	(Class IIa/b)
post therapy)	Poorly controlled cardiovascular risk factors		
Moderate Risk	Moderate baseline risk	Cardiology referral if	Consider TTE every 5yrs in Adults and child and
	Doxorubicin 100-249 mg/m2	new symptoms develop	
	RT 5-15 Gy MHD		adolescent cancer survivors (Class IIb)
	RT <5 Gy MHD + Doxorubicin \ge 100 mg/m2	(Class I)	
Low Risk	Low Baseline risk and normal assessment post therapy		
	Mild CTRCD during with recovery and end of therapy		
	RT <5 Gy MHD		
	Doxorubicin < 100mg/m2		

Conclusions

The advancing field of chemotherapeutics creates a beacon of hope for cancer patients but does open the door for an array of CTR-CVT that could impede recovery both mentally and physically. Although there is still large scope for further research, this new guideline helps us, as cardiologists, tailor a more personalised approach for patients on their journey through cancer survivorship.

Disclosures

None

References

- Roth GA, Abate D, Abate AH et al. 2018. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 2018;392(10159)1736-1788. DOI https://doi.org/10.1016/S0140-6736(18)32203-7
- MacEwan JP, Dennen S, Kee R et al. 2020. Changes in mortality associated with cancer drug approvals in the United States from 2000 to 2016. Journal of Medical Economics 2020;23(12)1558-1569. DOI https://doi.org/10.1080/13696998.2020.1834403
- Seabury SA, Goldman DP, Gupta CN et al. 2015. Quantifying Gains in the War on Cancer Due to Improved Treatment and Earlier Detection. Forum Health Econ Policy 2015; 19(1)141-156. DOI https://doi.org/10.1515/fhep-2015-0028
- Wang Y, Wang Y, Han X et al. 2022. Cardio-Oncology: A Myriad of Relationships Between Cardiovascular Disease and Cancer. Front Cardiovasc Med 2022;9:727487. DOI https://doi.org/10.3389/fcvm.2022.727487
- Sturgeon KM, Deng L, Bluethmann SM et al. 2019. A population-based study of cardiovascular disease mortality risk in US cancer patients. European Heart Journal 2019;40(48)3889-3897. DOI https://doi.org/10.1093/eurheartj/ehz766
- Stone JR, Kanneganti R, Abbasi M et al. 2021. Monitoring for Chemotherapy-Related Cardiotoxicity in the Form of Left Ventricular Systolic Dysfunction: A Review of Current Recommendations. JCO Onocology Practice 2021;17(5)228-236
- Lyon AR, Lopez-Fernandez T, Couch LS et al. 2022. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the task force on cardio-oncology of the European Society of Cardiology (ESC). European Heart Journal 2022;00:1-133. DOI https://doi.org/10.1093/eurheartj/ehac244
- Michel L, Mincu RI, Mahabadi AA et al. 2020. Troponins and brain natriuretic peptides for the prediction of cardiotoxicity in cancer patients: a meta-analysis. European Journal of Heart Failure 2020;22:350-361.

- Cardinal D, Lacopo F, Cipolla CM et al. 2020. Cardiotoxicity of anthracyclines. Front. Cardiovasc Med 2020;7:26. DOI https://doi.org/10.3389/fcvm.2020.00026
- Lewinter C, Nielsen TH, Edfors LR et al. 2021. A systematic review and meta-analysis of beta-blockers and renin–angiotensin system inhibitors for preventing left ventricular dysfunction due to anthracyclines or trastuzumab in patients with breast cancer. European Heart Journal 2021;43(27)2562-2569. DOI https://doi.org/10.1093/eurheartj/ehab843
- Ma Y, Bai F, Qin F et al. 2019. Beta-blockers for the primary prevention of anthracycline-induced cardiotoxicity: a meta-analysis of randomized controlled trials. BMC Pharmacol Toxicol 2019;20:18. DOI: 10.1186/s40360-019-0298-6
- Cardinale D, Colombo A, Bacchiani G et al. 2015. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015;131:1981– 1988
- Cardinale D, Colombo A, Lamantia Get al. 2010. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 2010;55:213–220.